Recent advances in multimodal LLMs and systems that use tools for long-video QA point to the promise of reasoning over hour-long episodes. However, many methods still compress content into lossy summaries or rely on limited toolsets, weakening temporal grounding and missing fine-grained cues. We propose a multi-agent framework in which a master LLM coordinates a grounding agent to localize question-relevant segments and a vision agent to extract targeted textual observations. The master agent plans with a step limit, and is trained with reinforcement learning to encourage concise, correct, and efficient multi-agent cooperation. This design helps the master agent focus on relevant clips via grounding, complements subtitles with visual detail, and yields interpretable trajectories. On our proposed LongTVQA and LongTVQA+ which are episode-level datasets aggregated from TVQA/TVQA+, our multi-agent system significantly outperforms strong non-agent baselines. Experiments also show reinforcement learning further strengthens reasoning and planning for the trained agent. Code and data will be shared at https://longvideoagent.github.io/.
翻译:近年来,多模态大语言模型以及利用工具进行长视频问答的系统取得了显著进展,这为对长达数小时的视频片段进行推理带来了希望。然而,现有方法通常将视频内容压缩为有损摘要或依赖有限的工具集,这削弱了时间定位能力并遗漏了细粒度线索。我们提出一种多智能体框架,其中主控大语言模型协调一个定位智能体以确定问题相关片段,以及一个视觉智能体以提取有针对性的文本观察结果。主控智能体在步骤限制下进行规划,并通过强化学习进行训练,以鼓励简洁、正确且高效的多智能体协作。该设计有助于主控智能体通过定位聚焦于相关片段,用视觉细节补充字幕信息,并产生可解释的推理轨迹。在我们提出的LongTVQA和LongTVQA+(从TVQA/TVQA+聚合而成的剧集级数据集)上,我们的多智能体系统显著优于强大的非智能体基线方法。实验还表明,强化学习进一步增强了已训练智能体的推理与规划能力。代码与数据将在 https://longvideoagent.github.io/ 公开。