Tensor cores (TCs) are a type of Application-Specific Integrated Circuit (ASIC) and are a recent addition to Graphics Processing Unit (GPU) architectures. As such, TCs are purposefully designed to greatly improve the performance of Matrix Multiply-Accumulate (MMA) operations. While TCs are heavily studied for machine learning and closely related fields, where their high efficiency is undeniable, MMA operations are not unique to these fields. More generally, any computation that can be expressed as MMA operations can leverage TCs, and potentially benefit from their higher computational throughput compared to other general-purpose cores, such as CUDA cores on Nvidia GPUs. In this paper, we propose the first double precision (FP64) Euclidean distance calculation algorithm, which is expressed as MMA operations to leverage TCs on Nvidia GPUs, rather than the more commonly used CUDA cores. To show that the Euclidean distance can be accelerated in a real-world application, we evaluate our proposed TC algorithm on the distance similarity self-join problem, as the most computationally intensive part of the algorithm consists of computing distances in a multi-dimensional space. We find that the performance gain from using the tensor core algorithm over the CUDA core algorithm depends weakly on the dataset size and distribution, but is strongly dependent on data dimensionality. Overall, TCs are a compelling alternative to CUDA cores, particularly when the data dimensionality is low ($\leq{4}$), as we achieve an average speedup of $1.28\times$ and up to $2.23\times$ against a state-of-the-art GPU distance similarity self-join algorithm. Furthermore, because this paper is among the first to explore the use of TCs for FP64 general-purpose computation, future research is promising.


翻译:塔岩核心(TCs) 是应用特殊度集成电路的一种类型, 是图像处理股(GPU)结构的最近新增。 因此, TCs 的目的设计目的就是要大大改进矩阵乘积( MMA) 操作的性能。 虽然TCs 是为机器学习和密切相关的字段进行的大量研究, 其效率是不可否认的, MMA 操作并不是这些领域独有的。 更一般地说, 任何可以表现为 MMA 操作能够利用 TC( ASIC) 的计算结果, 并且有可能从它们与其他通用核心( 如 CUDA Nvidia GPS 上的 CUDA 核心数据) 相比更高的计算结果中获益。 在本文中, 我们提出第一个双精度计算( FP64 Euclidea) 远程计算算法( FP64 Euclideidean commlational ) 算算算算法( ), 以MMMA 操作方式在 Nvidiadia GUDA 中, 以更常用的普通的离子为主。 在实际应用中可以加速的距离中, 显示Eucli- daldeal- dal- daldeal- daldealde 数据中, 我们在计算中, 的计算中, 的计算中, 。

0
下载
关闭预览

相关内容

它的目的是理解计算的本质,并因此提供更有效的方法。所有介绍或研究数学、逻辑和形式概念和方法的论文都是受欢迎的,前提是它们的动机显然来自计算领域。理论计算机科学发表的论文按其性质分为三个部分。第一部分“算法,自动机,复杂性和游戏”致力于研究算法及其复杂性,使用分析,组合或概率的方法。它包括抽象复杂性的整个领域(即,所有可以使用图灵机器定义的层次结构的结果)、自动机和语言理论的整个领域(包括无限词和无限语言的自动机),整个几何(图形)应用领域和使用统计方法测量系统性能的整个领域。官网链接:https://www.sciencedirect.com/journal/theoretical-computer-science/about/aims-and-scope
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月31日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员