Legal and ethical restrictions on accessing relevant data inhibit data science research in critical domains such as health, finance, and education. Synthetic data generation algorithms with privacy guarantees are emerging as a paradigm to break this data logjam. Existing approaches, however, assume that the data holders supply their raw data to a trusted curator, who uses it as fuel for synthetic data generation. This severely limits the applicability, as much of the valuable data in the world is locked up in silos, controlled by entities who cannot show their data to each other or a central aggregator without raising privacy concerns. To overcome this roadblock, we propose the first solution in which data holders only share encrypted data for differentially private synthetic data generation. Data holders send shares to servers who perform Secure Multiparty Computation (MPC) computations while the original data stays encrypted. We instantiate this idea in an MPC protocol for the Multiplicative Weights with Exponential Mechanism (MWEM) algorithm to generate synthetic data based on real data originating from many data holders without reliance on a single point of failure.
翻译:对获取相关数据的法律和伦理限制阻碍了卫生、金融、教育等关键领域的数据科学研究。具有隐私保障的合成数据生成算法正在成为打破这一数据记录的一种范式。但是,现有方法假定数据持有者将原始数据提供给可信赖的保管人,后者将原始数据用作合成数据生成的燃料。这严重限制了适用性,因为世界上许多有价值的数据被封闭在筒仓中,由无法相互向对方展示数据的实体或中央聚合器控制,而不引起隐私关切的实体控制。为了克服这一障碍,我们提出了第一个解决办法,即数据持有者只共享加密数据,用于不同程度的私人合成数据生成。数据持有者向在原始数据加密时进行安全多方计算(MPC)计算(MPC)的服务器发送共享数据。我们在多倍增效机制的MPC协议(MWEM)算法中反复提出这一想法,以便在不依赖单一故障点的情况下根据许多数据持有者的真实数据生成的合成数据生成合成数据。