The choice of token vocabulary affects the performance of machine translation. This paper aims to figure out what is a good vocabulary and whether one can find the optimal vocabulary without trial training. To answer these questions, we first provide an alternative understanding of the role of vocabulary from the perspective of information theory. Motivated by this, we formulate the quest of vocabularization -- finding the best token dictionary with a proper size -- as an optimal transport (OT) problem.We We propose VOLT, a simple and efficient solution without trial training. Empirical results show that VOLT outperforms widely-used vocabularies in diverse scenarios, including WMT-14 English-German and TED's 52 translation directions. For example, VOLT achieves 70% vocabulary size reduction and 0.5 BLEU gain on English-German translation. Also, compared to BPE-search, VOLT reduces the search time from 384 GPU hours to 30 GPU hours on English-German translation. Codes are available at https://github.com/Jingjing-NLP/VOLT .


翻译:选择象征性词汇会影响机器翻译的性能。 本文旨在找出什么是好的词汇, 以及人们能否在没有试用训练的情况下找到最佳词汇。 为了解答这些问题, 我们首先从信息理论的角度对词汇的作用提供另一种理解。 我们受此驱动, 将寻找浮子化 -- -- 找到具有适当尺寸的最佳象征性字典 -- -- 作为一种最佳运输( OT) 问题。 我们建议VOLT, 一种不经过试用培训的简单而有效的解决方案。 经验性结果显示, VOLT 超越了在多种情况下广泛使用的词汇, 包括 WMT-14 英文- 德文和TED 52 翻译方向。 例如, VOLT 实现了70%的词汇规模削减, 和英语- 德文翻译的0.5 BLEU 增益。 此外, 与 BPE- 搜索相比, VOLT 将搜索时间从384 GPU小时缩短到英语- 德语翻译的30 GPU小时。 代码可在 https://github. com/ Jingjing- NLP/ VOLT 。

2
下载
关闭预览

相关内容

【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
机器翻译 | Bleu:此蓝;非彼蓝
黑龙江大学自然语言处理实验室
4+阅读 · 2018年3月14日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
12+阅读 · 2019年3月14日
Doubly Attentive Transformer Machine Translation
Arxiv
4+阅读 · 2018年7月30日
Arxiv
3+阅读 · 2018年6月1日
VIP会员
相关VIP内容
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
机器翻译 | Bleu:此蓝;非彼蓝
黑龙江大学自然语言处理实验室
4+阅读 · 2018年3月14日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员