There has been a considerable amount of research aimed at automating the documentation of accessibility in the built environment. Yet so far, there has been no fully automatic system that has been shown to reliably document surface quality barriers in the built environment in real-time. This is a mixed problem of HCI and applied machine learning, requiring the careful use of applied machine learning to address the real-world concern of practical documentation. To address this challenge, we offer a framework for designing applied machine learning approaches aimed at documenting the (in)accessibility of the built environment. This framework is designed to take into account the real-world picture, recognizing that the design of any accessibility documentation system has to take into account a range of factors that are not usually considered in machine learning research. We then apply this framework in a case study, illustrating an approach which can obtain a f-ratio of 0.952 in the best-case scenario.


翻译:已经进行了大量研究,旨在将建筑环境无障碍文件自动化,但迄今为止,还没有完全自动的系统能够可靠地实时记录建筑环境中的表面质量障碍,这是HCI和应用机器学习的混合问题,需要认真使用应用机器学习来解决现实世界对实际文件的关切。为了应对这一挑战,我们为设计应用机器学习方法提供了一个框架,目的是记录(无法)建筑环境的无障碍情况。这个框架旨在考虑现实世界的图景,认识到任何无障碍文件系统的设计必须考虑到机器学习研究中通常不考虑的一系列因素。我们然后在案例研究中应用这一框架,说明在最佳情况下可以取得0.952法郎的准绳的方法。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
341+阅读 · 2020年1月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Reinforcement Learning for Quantitative Trading
Arxiv
1+阅读 · 2021年9月28日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
8+阅读 · 2021年5月21日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Learning by Abstraction: The Neural State Machine
Arxiv
6+阅读 · 2019年7月11日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员