We show that the extension types occurring in Riehl--Shulman's work on synthetic $(\infty,1)$-categories can be interpreted in the intended semantics in a way so that they are strictly stable under substitution. The splitting method used here is due to Voevodsky in 2009. It was later generalized by Lumsdaine--Warren to the method of local universes.
翻译:我们发现,Riehl-Shulman关于合成$(\ infty,1)-$($)类的研究中的扩展类型可以用预期的语义学来解释,这样它们就完全稳定地处于替代状态。 这里使用的分裂法是2009年Voevodsky的产物,后来Lumsdaine-Warren将其普遍化为当地宇宙的方法。