In edge-cloud collaborative intelligence (CI), an unreliable transmission channel exists in the information path of the AI model performing the inference. It is important to be able to simulate the performance of the CI system across an imperfect channel in order to understand system behavior and develop appropriate error control strategies. In this paper we present a simulation framework called DFTS2, which enables researchers to define the components of the CI system in TensorFlow~2, select a packet-based channel model with various parameters, and simulate system behavior under various channel conditions and error/loss control strategies. Using DFTS2, we also present the most comprehensive study to date of the packet loss concealment methods for collaborative image classification models.
翻译:在边缘悬崖协作情报(CI)中,在进行推断的AI模型的信息路径中存在一个不可靠的传输渠道,重要的是能够模拟光学系统在一个不完善的通道上的性能,以便了解系统行为和制定适当的错误控制战略。在本文中,我们提出了一个称为DFTS2的模拟框架,使研究人员能够确定TensorFlow-2的光学系统组件,选择一个具有不同参数的包件信道模型,以及各种频道条件和错误/损失控制战略下的模拟系统行为。我们还利用DFTS2, 介绍了迄今为止对合作图像分类模型的包封隐藏方法的最全面研究。