It is crucial to choose the appropriate scale in order to build an effective and informative representation of a complex system. Scientists carefully choose the scales for their experiments to extract the variables that describe the causalities in the system. They have found that the coarse scale(macro) is sometimes more causal and informative than the numerous-parameter observations(micro). The phenomenon that the causality emerges by coarse-graining is called Causal Emergence(CE). Based on information theory, a number of recent works have quantitatively shown that CE indeed occurs while coarse-graining a micro model to the macro. However, the existing works have not discussed the question of why and when the CE occurs. We quantitatively analyze the redistribution of uncertainties for coarse-graining and suggest that the redistribution of uncertainties is the cause of causal emergence. We further analyze the thresholds that determine if CE occurs or not. From the regularity of the transition probability matrix(TPM) of discrete systems, the mathematical expressions of the model properties are derived. The values of thresholds for different operations are computed. The results provide the critical and specific conditions of CE as helpful suggestions for choosing the proper coarse-graining operation. The results also provide a new way to better understand the nature of causality and causal emergence.
翻译:关键是要选择适当的比例,以建立一个高效且信息翔实的复杂系统代表。 科学家仔细选择实验的尺度, 以提取描述系统中因果关系的变量。 他们发现粗皮比例(macro)有时比多参数的观测(Micro)更具有因果关系和丰富性。 粗皮重力产生的因果关系现象被称为“ 原因出现” 。 根据信息理论, 最近的一些作品从数量上表明, CE确实发生时,微模型向宏观粗化。 但是,现有的工程没有讨论为什么和何时出现CE的问题。 我们定量分析粗皮比例(macro)的不确定性再分配,认为不确定性的再分配是因果出现的原因。 我们进一步分析确定CE是否发生的临界值。 从离散系统的过渡概率矩阵(TPM)的规律性来看,模型属性的数学表达方式是推断出来的。 不同的操作的临界值是计算的。 现有工程没有讨论为什么和何时发生CEE的临界和具体条件,我们从数量上分析不确定性的再分析不确定性的再分配是因果性产生的结果。 我们进一步分析了CEE是否发生。 提供了正确的因果关系性建议,为选择正确的共同结果提供了更好的方法。