We present a nodal interpolation method to approximate a subdivision model. The main application is to model and represent curved geometry without gaps and preserving the required simulation intent. Accordingly, we devise the technique to maintain the necessary sharp features and smooth the indicated ones. This sharp-to-smooth modeling capability handles unstructured configurations of the simulation points, curves, and surfaces. The surfaces correspond to initial linear triangulations that determine the sharp point and curve features. The method automatically suggests a subset of sharp features to smooth which the user modifies to obtain a limit model preserving the initial points. This model reconstructs the curvature by subdivision of the initial mesh, with no need of an underlying curved geometry model. Finally, given a polynomial degree and a nodal distribution, the method generates a piece-wise polynomial representation interpolating the limit model. We show numerical evidence that this approximation, naturally aligned to the subdivision features, converges to the model geometrically with the polynomial degree for nodal distributions with sub-optimal Lebesgue constant. We also apply the method to prescribe the curved boundary of a high-order volume mesh. We conclude that our sharp-to-smooth modeling capability leads to curved geometry representations with enhanced preservation of the simulation intent.
翻译:我们提出了一个节点间插方法,以接近一个亚形模型。 主要的应用程序是建模并代表没有空隙的曲线几何, 并保存所需的模拟意图。 因此, 我们设计了维持必要精细特征和平稳显示的特征的技术。 这种尖到移动的模型能力处理模拟点、 曲线和表面的无结构配置。 表面相当于确定尖锐点和曲线特征的初始线性三角。 这种方法自动显示一些尖锐特征的组合, 用户为了获得保存初始点的极限模型而调整这些特征。 这个模型通过初始网格的子图解重建曲线, 不需要一个基本的曲线几何测模型模型。 最后, 这个方法可以处理模拟点、 曲线、 曲线和表面的无结构分布。 这个方法可以产生一个小巧的多角度多角度代表界面, 将模型和亚形特征自然匹配到模型的平滑度。 这个模型通过小模型的多角度分布度来重建原始网点分布模型的曲线, 并且不需要一个曲线的曲线缩略图。 我们用这个方法来测量高曲线的曲线的曲线 。