This paper describes our participation in the MentalRiskES task at IberLEF 2023. The task involved predicting the likelihood of an individual experiencing depression based on their social media activity. The dataset consisted of conversations from 175 Telegram users, each labeled according to their evidence of suffering from the disorder. We used a combination of traditional machine learning and deep learning techniques to solve four predictive subtasks: binary classification, simple regression, multiclass classification, and multiclass regression. We approached this by training a model to solve the multiclass regression case and then transforming the predictions to work for the other three subtasks. We compare the performance of two different modeling approaches: fine-tuning a BERT-based model and using sentence embeddings as inputs to a linear regressor, with the latter yielding better results. The code to reproduce our results can be found at: https://github.com/simonsanvil/EarlyDepression-MentalRiskES.
翻译:暂无翻译