We investigate the quality of space approximation of a class of stochastic integral equations of convolution type with Gaussian noise. Such equations arise, for example, when considering mild solutions of stochastic fractional order partial differential equations but also when considering mild solutions of classical stochastic partial differential equations. The key requirement for the equations is a smoothing property of the deterministic evolution operator which is typical in parabolic type problems. We show that if one has access to nonsmooth data estimates for the deterministic error operator together with its derivative of a space discretization procedure, then one obtains error estimates in pathwise H\"older norms with rates that can be read off the deterministic error rates. We illustrate the main result by considering a class of stochastic fractional order partial differential equations and space approximations performed by spectral Galerkin methods and finite elements. We also improve an existing result on the stochastic heat equation.
翻译:我们用高西亚噪声来调查一组分流式组合式组合式组合方程式的空间近似质量。 例如,当考虑随机分序分序部分方程式的温和解决方案时,这种方程式产生的空间近似质量; 同时,当考虑古典随机分解部分方程式的温和解决方案时,这种方程式的关键要求是确定性分解操作器的平滑属性,这在抛物线类型问题中是典型的。我们表明,如果人们能够获得确定性错误操作器的非移动性数据估算,以及空间离散程序的衍生物,那么人们就会在路径顺畅的H\"老化规范中得出错误估计值,其比率可以从确定性差率中读出。我们通过考虑光谱加列金方法和有限元素所执行的分解分解分解式组合方程式和空间近似值的分类,来说明主要结果。我们还改进了分解性热方程式的现有结果。