In this paper, we develop a computational multiscale to solve the parabolic wave approximation with heterogeneous and variable media. Parabolic wave approximation is a technique to approximate the full wave equation. One benefit of the method is that: one wave propagation direction can be taken as an evolution direction, and we then can discretize it using a classical scheme like Backward Euler. Consequently, we obtain a set of quasi-gas-dynamic (QGD) models with different heterogeneous permeability fields. Then, we employ constraint energy minimization generalized multiscale finite element method (CEM-GMsFEM) to perform spatial discretization for the problem. The resulting system can be solved by combining the central difference in time evolution. Due to the variable media, we apply the technique of proper orthogonal decomposition (POD) to further the dimension of the problem and solve the corresponding model problem in the POD space instead of in the whole multiscale space spanned by all possible multiscale basis functions. We prove the stability of the full discretization scheme and give the convergence analysis of the proposed approximation scheme. Numerical results verify the effectiveness of the proposed method.
翻译:在本文中, 我们开发了一个计算多尺度的多尺度, 用各种介质和可变介质来解决抛射波波近似。 抛射波近似是一种接近全波方程式的技术。 方法的一个好处是: 一个波的传播方向可以被看作一个进化方向, 然后我们就可以使用一个古典方案, 比如向后欧勒 。 因此, 我们获得了一套具有不同多元渗透性域的准气体动力模型。 然后, 我们用限制最小化能源的通用多级有限元素方法( CEM- GMsFEM) 来为问题进行空间分解。 由此产生的系统可以通过在时间进化中结合中心差异来加以解决。 由于可变介质, 我们应用了适当或图层分解法( POD) 技术来推进问题层面, 并解决 POD空间中相应的模型问题, 而不是所有可能的多尺度基功能所覆盖的整个多尺度空间。 我们证明了完全离散化的系统( CEM- GMFEM) 的稳定性, 并给出拟议的近似方法的趋同分析。 数字结果证实了拟议方法的有效性 。