Social turbulence can affect people financial decisions, causing changes in spending and saving. During a global turbulence as significant as the COVID-19 pandemic, such changes are inevitable. Here we examine how the effects of COVID-19 on various jurisdictions influenced the global price of Bitcoin. We hypothesize that lock downs and expectations of economic recession erode people trust in fiat (government-issued) currencies, thus elevating cryptocurrencies. Hence, we expect to identify a causal relation between the turbulence caused by the pandemic, demand for Bitcoin, and ultimately its price. To test the hypothesis, we merged datasets of Bitcoin prices and COVID-19 cases and deaths. We also engineered extra features and applied statistical and machine learning (ML) models. We applied a Random Forest model (RF) to identify and rank the feature importance, and ran a Long Short-Term Memory (LSTM) model on Bitcoin prices data set twice: with and without accounting for COVID-19 related features. We find that adding COVID-19 data into the LSTM model improved prediction of Bitcoin prices.


翻译:社会动荡会影响人们的金融决策,导致支出和储蓄的变化。在像COVID-19大流行这样的全球性动荡期间,这种变化是不可避免的。在这里,我们研究COVID-19对不同管辖区的影响如何影响比特币的全球价格。我们假设经济衰退的封闭和预期会削弱人们对(政府发行的)货币的信任,从而提高低调。因此,我们期望找出该大流行造成的动荡、对比特币的需求以及最终价格之间的因果关系。为了检验这一假设,我们把Bitcoin价格和COVID-19案例和死亡案例的数据集合并在一起。我们还设计了额外的特征和应用统计和机器学习模型。我们采用了随机森林模型来确定和排列特质的重要性,并且对比特币价格数据设置了两次长期的短期记忆模型:与CVID-19相关特征有关,而不计入。我们发现在LSTM模型中添加了COVID-19数据,改进了比特币价格的预测。

0
下载
关闭预览

相关内容

比特币(Bitcoin)是一种去中心化的点对点的电子货币。其特征包括:1、去中心化,将铸币权下放给个人,人人都可以生产;2、总量一定,是通货紧缩的货币;3、匿名/即时交易。
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员