A two-step concept for 3D segmentation on 5 abdominal organs inside volumetric CT images is presented. First each relevant organ's volume of interest is extracted as bounding box. The extracted volume acts as input for a second stage, wherein two compared U-Nets with different architectural dimensions re-construct an organ segmentation as label mask. In this work, we focus on comparing 2D U-Nets vs. 3D U-Net counterparts. Our initial results indicate Dice improvements of about 6\% at maximum. In this study to our surprise, liver and kidneys for instance were tackled significantly better using the faster and GPU-memory saving 2D U-Nets. For other abdominal key organs, there were no significant differences, but we observe highly significant advantages for the 2D U-Net in terms of GPU computational efforts for all organs under study.
翻译:展示了对体积CT图像中5个腹部器官进行三维分解的两步概念。 首先,每个相关器官的兴趣量作为捆绑框提取。 提取的体积作为第二阶段的投入, 其中两个对不同建筑层面的U-Net进行对比, 重新构造一个器官分解作为标签面罩。 在这项工作中, 我们侧重于对 2D U- Nets 和 3D U- Net 对应方进行比较。 我们的初步结果显示, 最多是 6 ⁇ 的骰子改进了大约 6 ⁇ 。 例如, 在这项研究中, 利用更快的和 GPU- 模莫里保存 2D U- Nets 来大大改进了对我们的突袭、 肝脏和肾脏的研究。 对于其他腹部关键器官来说, 没有显著的差别, 但我们发现, 2D U- Net 在所有研究中的器官的 GPU 计算工作中有很大的优势。