Federated learning (FL) learns a model jointly from a set of participating devices without sharing each other's privately held data. The characteristics of non-i.i.d. data across the network, low device participation, high communication costs, and the mandate that data remain private bring challenges in understanding the convergence of FL algorithms, particularly with regards to how convergence scales with the number of participating devices. In this paper, we focus on Federated Averaging (FedAvg)--arguably the most popular and effective FL algorithm class in use today--and provide a unified and comprehensive study of its convergence rate. Although FedAvg has recently been studied by an emerging line of literature, a systematic study of how FedAvg's convergence scales with the number of participating devices in the fully heterogeneous FL setting is lacking--a crucial issue whose answer would shed light on the performance of FedAvg in large FL systems in practice. We fill this gap by providing a unified analysis that establishes convergence guarantees for FedAvg under strongly convex smooth, convex smooth problems, and overparameterized strongly convex smooth problems. We show that FedAvg enjoys linear speedup in each case, although with different convergence rates and communication efficiencies. While there have been linear speedup results from distributed optimization that assumes full participation, ours are the first to establish linear speedup for FedAvg under both statistical and system heterogeneity. For strongly convex and convex problems, we also characterize the corresponding convergence rates for the Nesterov accelerated FedAvg algorithm, which are the first linear speedup guarantees for momentum variants of FedAvg in convex settings. Empirical studies of the algorithms in various settings have supported our theoretical results.


翻译:联邦学习(FL) 从一组参与设备中联合学习一个模型,但不相互分享对方私人持有的数据。 非i.d.d.数据的特点,整个网络的数据,设备参与率低,通信成本高,以及数据保持私密的任务,都给理解FL算法的趋同性带来了挑战,特别是在如何与参与设备数目的趋同规模方面。在本文中,我们侧重于FedAvrial(FedAvg)-可以说是最受欢迎、最有效的FL算法类,对它的趋同率进行了统一而全面的研究。尽管FedAvg最近通过新的文献系列对数据进行了研究,但对于FedAvg的趋同性趋同性规模与完全不均的FLFL设置中的参与性能的趋同性提出了系统性的研究。 我们通过提供统一的分析,为FedAvg的趋同性趋同率提供了首次的趋同性保证,而FedAv的趋同性平稳的趋同性,尽管我们每次都以直线式的趋同速度的研究结果。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员