Accurate and efficient point cloud registration is a challenge because the noise and a large number of points impact the correspondence search. This challenge is still a remaining research problem since most of the existing methods rely on correspondence search. To solve this challenge, we propose a new data-driven registration algorithm by investigating deep generative neural networks to point cloud registration. Given two point clouds, the motivation is to generate the aligned point clouds directly, which is very useful in many applications like 3D matching and search. We design an end-to-end generative neural network for aligned point clouds generation to achieve this motivation, containing three novel components. Firstly, a point multi-perception layer (MLP) mixer (PointMixer) network is proposed to efficiently maintain both the global and local structure information at multiple levels from the self point clouds. Secondly, a feature interaction module is proposed to fuse information from cross point clouds. Thirdly, a parallel and differential sample consensus method is proposed to calculate the transformation matrix of the input point clouds based on the generated registration results. The proposed generative neural network is trained in a GAN framework by maintaining the data distribution and structure similarity. The experiments on both ModelNet40 and 7Scene datasets demonstrate that the proposed algorithm achieves state-of-the-art accuracy and efficiency. Notably, our method reduces $2\times$ in registration error (CD) and $12\times$ running time compared to the state-of-the-art correspondence-based algorithm.
翻译:准确而高效的点云登记是一项挑战,因为噪音和大量点点影响函授搜索。 这一挑战仍然是尚存的研究问题, 因为大多数现有方法都依靠函授搜索。 为了解决这一挑战, 我们建议采用新的数据驱动登记算法, 调查深层神经神经网络, 以发现云登记。 鉴于两个点云, 动机是直接生成对齐点云, 这在许多应用程序中非常有用, 如 3D 匹配和搜索。 我们设计了一个端到端的基因化神经网络, 用于匹配点云生成, 以达到这一动机, 包含三个新构件。 首先, 提议建立一个点多感知层( MLP) 混合器(PointMixer) 网络, 以便从自我点云中从多个层面有效地维护全球和地方结构信息。 第二, 提议了一个功能互动模块, 将交叉点云的信息连接起来。 第三, 提出了一个平行和差异的样本共识方法, 以根据生成的登记结果计算输入点云的转换矩阵。 拟议的基因化内线网络在GAN框架中接受培训, 维护数据分配和结构中的对应的对等对应数据分配和结构的精确度, 。 在模型中, 测试中, 测试中, 将测试中, 将降低了我们的数据- 运行的精确度- 和运行的算入 和 度 的 度 度- 运行中的数据- 度- 度- 度- 度- 度- 度- 度- 度- 和 运行时间轴- 测试- 测试- 测试- 度- 度- 度- 度- 测试- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 时间- 时间- 时间- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 时间- 和 度-