Rockfall detection is a crucial procedure in the field of geology, which helps to reduce the associated risks. Currently, geologists identify rockfall events almost manually utilizing point cloud and imagery data obtained from different caption devices such as Terrestrial Laser Scanner or digital cameras. Multi-temporal comparison of the point clouds obtained with these techniques requires a tedious visual inspection to identify rockfall events which implies inaccuracies that depend on several factors such as human expertise and the sensibility of the sensors. This paper addresses this issue and provides an intelligent framework for rockfall event detection for any individual working in the intersection of the geology domain and decision support systems. The development of such an analysis framework poses significant research challenges and justifies intensive experimental analysis. In particular, we propose an intelligent system that utilizes multiple machine learning algorithms to detect rockfall clusters of point cloud data. Due to the extremely imbalanced nature of the problem, a plethora of state-of-the-art resampling techniques accompanied by multiple models and feature selection procedures are being investigated. Various machine learning pipeline combinations have been benchmarked and compared applying well-known metrics to be incorporated into our system. Specifically, we developed statistical and machine learning techniques and applied them to analyze point cloud data extracted from Terrestrial Laser Scanner in two distinct case studies, involving different geological contexts: the basaltic cliff of Castellfollit de la Roca and the conglomerate Montserrat Massif, both located in Spain. Our experimental data suggest that some of the above-mentioned machine learning pipelines can be utilized to detect rockfall incidents on mountain walls, with experimentally proven accuracy.


翻译:岩崩探测是地质学领域的一个关键程序,有助于减少相关风险。目前,地质学家们几乎人工地利用点云和从地面激光扫描器或数字相机等不同字幕装置获得的图像数据来识别岩崩事件。用这些技术对点云进行多时比较,需要用一种乏味的视觉检查来查明岩崩事件,这意味着不准确事件取决于若干因素,例如人的专门知识和感知感应器。本文讨论这一问题,并为在地质领域和决策支持系统交叉处工作的任何人提供岩崩事件探测智能框架。这种分析框架的开发提出了重大研究挑战,并证明有必要进行密集的实验分析。特别是,我们建议建立一个智能系统,利用多机算算算来探测点云云云数据群。由于问题性质极不平衡,大量州级抽查技术,同时有多种模型和特征选择程序。各种机器学习管道的组合已经得到验证,并比较了在地质领域领域和决策支持系统上的一些已知的测量数据。我们提出了一个智能系统,利用多机器算法来检测点的岩浆数据,我们用不同的数据分析了两个不同的岩浆模型,我们进行了不同的地质学研究。我们利用了两个数据库,我们用这些模型来分析。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
专知会员服务
42+阅读 · 2020年12月18日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年1月24日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员