In this paper we present a proof of a mathematical version of the strong cosmic censor conjecture attributed to Geroch-Horowitz and Penrose but formulated explicitly by Wald. The proof is based on the existence of future-inextendible causal curves in causal pasts of events on the future Cauchy horizon in a non-globally hyperbolic space-time. By examining explicit non-globally hyperbolic space-times we find that in case of several physically relevant solutions these future-inextendible curves have in fact infinite length. This way we recognize a close relationship between asymptotically flat or anti-de Sitter, physically relevant extendible space-times and the so-called Malament-Hogarth space-times which play a central role in recent investigations in the theory of "gravitational computers". This motivates us to exhibit a more sharp, more geometric formulation of the strong cosmic censor conjecture, namely "all physically relevant, asymptotically flat or anti-de Sitter but non-globally hyperbolic space-times are Malament-Hogarth ones". Our observations may indicate a natural but hidden connection between the strong cosmic censorship scenario and the Church-Turing thesis revealing an unexpected conceptual depth beneath both conjectures.


翻译:在本文中,我们展示了由Geroch-Horowitz和Penrose提出、但由Wald明确拟订的强大的宇宙审查假设的数学版本。 证据是基于未来Cauchy地平线事件的因果过去在非全球双曲空间时代存在未来不可扩展的因果关系曲线。 通过研究明确的非全球超曲空间时段,我们发现,在几个实际相关的解决方案中,这些未来不可扩展的曲线实际上有无限的长度。 这样我们才认识到,在无时或反射的平坦或反射的空间时段之间有着密切的关系。 物理上可扩展的空间时段与所谓的Malament-Hogarth空间时段之间有着密切的关系,这些时段在最近对“重塑计算机”理论的调查中发挥了核心作用。 这促使我们展示了更精确、更几何分化的宇宙审查强的洞穴,即“所有物理上都具有相关性的平坦直或反射断面但非全球超偏空时段空间时段是马来马拉门- 深的、但非全球性强空时段空间时段之间的紧密空间时段关系。 我们的观测可能显示了地下的自然- 文明- 文明- 以及深层的宇宙文明- 文明- 文明- 文明- 文明-文明- 的理论-文明-文明-文明-文明-文明-文明-文明- 之间的深层- 之间的秘密- 。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年8月9日
专知会员服务
56+阅读 · 2021年4月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员