String vibration represents an active field of research in acoustics. Small-amplitude vibration is often assumed, leading to simplified physical models that can be simulated efficiently. However, the inclusion of nonlinear phenomena due to larger string stretchings is necessary to capture important features, and efficient numerical algorithms are currently lacking in this context. Of the available techniques, many lead to schemes which may only be solved iteratively, resulting in high computational cost, and the additional concerns of existence and uniqueness of solutions. Slow and fast waves are present concurrently in the transverse and longitudinal directions of motion, adding further complications concerning numerical dispersion. This work presents a linearly-implicit scheme for the simulation of the geometrically exact nonlinear string model. The scheme conserves a numerical energy, expressed as the sum of quadratic terms only, and including an auxiliary state variable yielding the nonlinear effects. This scheme allows to treat the transverse and longitudinal waves separately, using a mixed finite difference/modal scheme for the two directions of motion, thus allowing to accurately resolve the wave speeds at reference sample rates. Numerical experiments are presented throughout.
翻译:字符串振动是声学研究的一个积极领域。 通常假设小气振动,导致可以有效模拟的简化物理模型。 但是,为了捕捉重要的特征,必须纳入因字符串伸展较大而出现的非线性现象,目前在这方面缺乏高效的数字算法。 在现有的技术中,许多方法导致只能迭接解决的预案,导致高计算成本,以及对于解决方案的存在和独特性的额外关注。运动的横向和纵向方向同时存在慢波和快速波,从而增加关于数字分散的复杂因素。这项工作为模拟几何精确的非线性字符串模型提供了一个线性隐含的图案。这个图案保存了数字能量,仅以四边术语的和表示,并包括产生非线性效应的辅助状态变量。 这个方法允许使用两种运动方向的混合有限差异/模式分别处理横向和长度波,从而能够准确解决参考样本率的波速。 整个图案实验都是由纽实验提供的。