Rich semantic information extraction plays a vital role on next-generation intelligent vehicles. Currently there is great amount of research focusing on fundamental applications such as 6D pose detection, road scene semantic segmentation, etc. And this provides us a great opportunity to think about how shall these data be organized and exploited. In this paper we propose road scene graph,a special scene-graph for intelligent vehicles. Different to classical data representation, this graph provides not only object proposals but also their pair-wise relationships. By organizing them in a topological graph, these data are explainable, fully-connected, and could be easily processed by GCNs (Graph Convolutional Networks). Here we apply scene graph on roads using our Road Scene Graph dataset, including the basic graph prediction model. This work also includes experimental evaluations using the proposed model.
翻译:丰富的语义信息提取在下一代智能飞行器上起着关键作用。 目前,有大量研究侧重于6D 形形探测、路景语义分割等基本应用。 这为我们提供了一个很好的机会来思考如何组织和利用这些数据。 在本文中,我们提出了道路景象图,这是智能飞行器的特别景象图。这个图与古典数据表述不同,它不仅提供了对象建议,而且还提供了它们的双向关系。通过用一个表层图来组织这些数据,这些数据可以解释,完全连接,并且可以很容易地由Graph Convolutional Networks(Graph Convolutional Networks)处理。 我们在这里使用我们的路景图数据集,包括基本图表预测模型,在公路上应用景象图图。 这项工作还包括使用拟议模型进行实验性评估。