We present an edge labeling of order-$k$ Voronoi diagrams, $V_k(S)$, of point sets $S$ in the plane, and study properties of the regions defined by them. Among them, we show that $V_k(S)$ has a small orientable cycle and path double cover, and we identify configurations that cannot appear in $V_k(S)$ for small values of $k$. This paper also contains a systematic study of well-known and new properties of $V_k(S)$, all whose proofs only rely on elementary geometric arguments in the plane. The maybe most comprehensive study of structural properties of $V_k(S)$ was done by D.T. Lee (On k-nearest neighbor Voronoi diagrams in the plane) in 1982. Our work reviews and extends the list of properties of higher order Voronoi diagrams.
翻译:我们用V_k(S)表示Voranoi图的边缘标签,即V_k(S)美元,点数在平面上设定了美元S美元,并研究了它们所定义的区域属性。其中,我们显示,美元V_k(S)美元有一个小的可调整周期和路径双覆盖,我们确定了小值K(S)美元不能以V_k(S)美元出现的配置。本文还包含对众所周知的新属性$V_k(S)的系统研究,所有这些属性的证明都只依赖于平面上的基本几何参数。也许对V_k(S)美元结构属性的最全面研究是由D.T.Lee(飞机上最远的邻居Voronoi图)在1982年完成的。我们的工作审查和扩展了Voronoi图表更高顺序的属性列表。