Since 2019, most ad exchanges and sell-side platforms (SSPs), in the online advertising industry, shifted from second to first price auctions. Due to the fundamental difference between these auctions, demand-side platforms (DSPs) have had to update their bidding strategies to avoid bidding unnecessarily high and hence overpaying. Bid shading was proposed to adjust the bid price intended for second-price auctions, in order to balance cost and winning probability in a first-price auction setup. In this study, we introduce a novel deep distribution network for optimal bidding in both open (non-censored) and closed (censored) online first-price auctions. Offline and online A/B testing results show that our algorithm outperforms previous state-of-art algorithms in terms of both surplus and effective cost per action (eCPX) metrics. Furthermore, the algorithm is optimized in run-time and has been deployed into VerizonMedia DSP as production algorithm, serving hundreds of billions of bid requests per day. Online A/B test shows that advertiser's ROI are improved by +2.4%, +2.4%, and +8.6% for impression based (CPM), click based (CPC), and conversion based (CPA) campaigns respectively.


翻译:自2019年以来,网上广告业的大多数广告交易所和销售平台(SSP)都从第二次拍卖转向第一次价格拍卖。由于这些拍卖之间的根本差异,需求方平台(DSP)不得不更新其投标战略以避免不必要高的投标,从而避免不必要高的出价,从而避免过度支付。投标阴影是为了调整第二次价格拍卖的标价价格,以便在第一次价格拍卖安排中平衡成本和胜出概率。在本研究中,我们引入了一个新的深层次分销网络,以便在公开(无审查的)和封闭的第一次价格拍卖(审查的)网上首价拍卖中进行最佳竞标。离线和在线A/B测试结果表明,我们的算法在盈余和每次行动的有效成本(eCPX)衡量标准方面都超过了以往的先进算法。此外,算法在运行时得到了优化,并被作为生产算法部署到VerizonMedia DSP,每天为数千亿个投标请求提供。在线A/B测试显示,广告商的ROI(基于+2.4 % 和KPL) 的图像(基于+M+2.4 % 运动) 改进了分别的图像(基于+MCSL)和KA+ 2.4)。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
11+阅读 · 2019年8月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月10日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
11+阅读 · 2019年8月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员