A genetic algorithm (GA) is a search method that optimises a population of solutions by simulating natural evolution. Good solutions reproduce together to create better candidates. The standard GA assumes that any two solutions can mate. However, in nature and social contexts, social networks can condition the likelihood that two individuals mate. This impact of population network structure over GAs performance is unknown. Here we introduce the Networked Genetic Algorithm (NGA) to evaluate how various random and scale-free population networks influence the optimisation performance of GAs on benchmark functions. We show evidence of significant variations in performance of the NGA as the network varies. In addition, we find that the best-performing population networks, characterised by intermediate density and low average shortest path length, significantly outperform the standard complete network GA. These results may constitute a starting point for network tuning and network control: seeing the network structure of the population as a parameter that can be tuned to improve the performance of evolutionary algorithms, and offer more realistic modelling of social learning.


翻译:基因算法(GA) 是一种搜索方法,它通过模拟自然进化来选择一系列解决方案。 良好的解决方案可以一起复制, 以创造更好的候选人。 标准 GA 假设任何两种解决方案都可以交配。 但是, 在自然和社会背景下, 社会网络可以决定两个个体交配的可能性。 人口网络结构对 GA 性能的这种影响尚不得而知。 我们在此介绍“ 网络遗传算法( GA) ”, 以评价各种随机和无规模的人口网络如何影响GA 基准功能的优化性能。 我们显示了NGA 的运行差异很大的证据。 此外, 我们发现以中等密度和低平均短路长度为特点的最佳人口网络大大超过标准完整 GA 。 这些结果可能构成网络调整和网络控制的起点: 将人口的网络结构视为可以调整的参数, 以改善进化算法的性能, 并提供更现实的社会学习模型 。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
VIP会员
相关VIP内容
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Top
微信扫码咨询专知VIP会员