The continuous increase in the use of social media and the visual content on the internet have accelerated the research in computer vision field in general and the image captioning task in specific. The process of generating a caption that best describes an image is a useful task for various applications such as it can be used in image indexing and as a hearing aid for the visually impaired. In recent years, the image captioning task has witnessed remarkable advances regarding both datasets and architectures, and as a result, the captioning quality has reached an astounding performance. However, the majority of these advances especially in datasets are targeted for English, which left other languages such as Arabic lagging behind. Although Arabic language, being spoken by more than 450 million people and being the most growing language on the internet, lacks the fundamental pillars it needs to advance its image captioning research, such as benchmarks or unified datasets. This works is an attempt to expedite the synergy in this task by providing unified datasets and benchmarks, while also exploring methods and techniques that could enhance the performance of Arabic image captioning. The use of multi-task learning is explored, alongside exploring various word representations and different features. The results showed that the use of multi-task learning and pre-trained word embeddings noticeably enhanced the quality of image captioning, however the presented results shows that Arabic captioning still lags behind when compared to the English language. The used dataset and code are available at this link.


翻译:互联网上社交媒体和视觉内容的使用持续增加,加快了计算机视觉领域总体研究和图像说明任务的具体具体任务。制作最能描述图像的字幕的过程是各种应用的有用任务,例如,它可用于图像索引编制和作为视力受损者的助听器。近年来,图像说明任务在数据集和结构方面都取得了显著进展,结果,字幕质量达到了惊人的性能。然而,这些进步,特别是数据集方面的进步,大部分是针对英语的,使阿拉伯语等其他语言落在后面。虽然阿拉伯语是4.5亿多人的口语,是互联网上增长最快的语言,但缺乏推进其图像说明研究所需的基本支柱,例如基准或统一的数据集。这项工作试图通过提供统一的数据集和基准,加快这项任务的协同作用,同时探索能够提高阿拉伯图像说明性能的方法和技术。多任务学习的用途是探索,同时探索各种文字表述和不同语言的后端链接,同时探索各种文字解释的后方程,同时展示了多种语言的后方程。在学习前方言后程时,还展示了多种语言的后程。

0
下载
关闭预览

相关内容

图像字幕(Image Captioning),是指从图像生成文本描述的过程,主要根据图像中物体和物体的动作。
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
29+阅读 · 2022年3月28日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员