The availability of the sheer volume of Copernicus Sentinel-2 imagery has created new opportunities for exploiting deep learning methods for land use land cover (LULC) mapping at large scales. However, an extensive set of benchmark experiments is currently lacking, i.e. deep learning models tested on the same dataset, with a common and consistent set of metrics, and in the same hardware. In this work, we use the BigEarthNet Sentinel-2 multispectral dataset to benchmark for the first time different state-of-the-art deep learning models for the multi-label, multi-class LULC classification problem, contributing with an exhaustive zoo of 56 trained models. Our benchmark includes standard Convolution Neural Network architectures, but we also test non-convolutional methods, such as Multi-Layer Perceptrons and Vision Transformers. We put to the test EfficientNets and Wide Residual Networks (WRN) architectures, and leverage classification accuracy, training time and inference rate. Furthermore, we propose to use the EfficientNet framework for the compound scaling of a lightweight WRN, by varying network depth, width, and input data resolution. Enhanced with an Efficient Channel Attention mechanism, our scaled lightweight model emerged as the new state-of-the-art. It achieves 4.5% higher averaged F-Score classification accuracy for all 19 LULC classes compared to a standard ResNet50 baseline model, with an order of magnitude less trainable parameters. We provide access to all trained models, along with our code for distributed training on multiple GPU nodes. This model zoo of pre-trained encoders can be used for transfer learning and rapid prototyping in different remote sensing tasks that use Sentinel-2 data, instead of exploiting backbone models trained with data from a different domain, e.g., from ImageNet.
翻译:Copernicus Sentinel-2 图像的纯量为利用土地利用土地覆盖(LULC)大比例绘图的深学习方法创造了新的机会。 但是,目前缺乏一系列广泛的基准实验,即在同一数据集中测试的深学习模型,有一套共同和一致的衡量标准,以及同一硬件。在这项工作中,我们使用大地球网哨点-2多光谱数据集,首次为多标签、多级LULLC分类问题使用各种最先进的深度学习模型进行基准。我们的基准包括了56个经过培训的模型。我们的基准包括了标准的 Convolution Neural网络架构,但我们也测试了非革命性的方法,例如多层光谱和视觉变异体。我们把高效的网络和宽度网络架构(RWN)的架构用作测试,并用最先进的模型、培训时间和发酵率来计算。此外,我们提议使用高效的网络框架来对轻度的 RWN 模型进行复合升级的升级的升级模型,通过不同的网络深度、宽度、升级的深度、升级的深度、升级的智能、升级的智能数据流化的流化的流化数据系统,从而在不断升级的轨道上进行升级的升级的升级的升级的升级的升级的升级的升级的升级的流体格数据转换的流化数据转换的系统,从而实现一个升级的升级的升级的升级的升级的升级的升级的升级的系统。