In the non-uniform $k$-center problem, the objective is to cover points in a metric space with specified number of balls of different radii. Chakrabarty, Goyal, and Krishnaswamy [ICALP 2016, Trans. on Algs. 2020] (CGK, henceforth) give a constant factor approximation when there are two types of radii. In this paper, we give a constant factor approximation for the two radii case in the presence of outliers. To achieve this, we need to bypass the technical barrier of bad integrality gaps in the CGK approach. We do so using "the ellipsoid method inside the ellipsoid method": use an outer layer of the ellipsoid method to reduce to stylized instances and use an inner layer of the ellipsoid method to solve these specialized instances. This idea is of independent interest and could be applicable to other problems. Keywords: Approximation, Clustering, Outliers, and Round-or-Cut.


翻译:在非统一的 $k$ 中心问题中, 目标是覆盖一个具有不同弧度球数的公制空间中的点数。 Chakrabarty、 Goyal 和 Krishnaswamy [CICAP 2016, Trans. on Algs. 2020] (CGK, 今后) 在存在两种弧度时, 给出恒定系数近似值。 在本文中, 我们给出两个弧度情况下的常数系数近似值。 为了实现这一目标, 我们需要绕过 CGK 方法中不良整体性差距的技术屏障。 我们使用“ 环球法中的环球法 ” : 使用环球法的外层来减少螺旋化情况, 并使用环球法的内层来解决这些特殊情况。 这个概念是独立的, 可以适用于其他问题 。 关键词是 : 适应性、 组合 、 组合 和 圆环 。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年4月10日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2021年4月8日
Arxiv
9+阅读 · 2020年10月29日
Arxiv
3+阅读 · 2017年12月14日
Arxiv
6+阅读 · 2017年12月7日
VIP会员
相关VIP内容
专知会员服务
22+阅读 · 2021年4月10日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员