In the non-uniform $k$-center problem, the objective is to cover points in a metric space with specified number of balls of different radii. Chakrabarty, Goyal, and Krishnaswamy [ICALP 2016, Trans. on Algs. 2020] (CGK, henceforth) give a constant factor approximation when there are two types of radii. In this paper, we give a constant factor approximation for the two radii case in the presence of outliers. To achieve this, we need to bypass the technical barrier of bad integrality gaps in the CGK approach. We do so using "the ellipsoid method inside the ellipsoid method": use an outer layer of the ellipsoid method to reduce to stylized instances and use an inner layer of the ellipsoid method to solve these specialized instances. This idea is of independent interest and could be applicable to other problems. Keywords: Approximation, Clustering, Outliers, and Round-or-Cut.
翻译:在非统一的 $k$ 中心问题中, 目标是覆盖一个具有不同弧度球数的公制空间中的点数。 Chakrabarty、 Goyal 和 Krishnaswamy [CICAP 2016, Trans. on Algs. 2020] (CGK, 今后) 在存在两种弧度时, 给出恒定系数近似值。 在本文中, 我们给出两个弧度情况下的常数系数近似值。 为了实现这一目标, 我们需要绕过 CGK 方法中不良整体性差距的技术屏障。 我们使用“ 环球法中的环球法 ” : 使用环球法的外层来减少螺旋化情况, 并使用环球法的内层来解决这些特殊情况。 这个概念是独立的, 可以适用于其他问题 。 关键词是 : 适应性、 组合 、 组合 和 圆环 。