For effective human-robot teaming, it is important for the robots to be able to share their visual perception with the human operators. In a harsh remote collaboration setting, however, it is especially challenging to transfer a large amount of sensory data over a low-bandwidth network in real-time, e.g., for the task of 3D shape reconstruction given 2D camera images. To reduce the burden of data transferring, data compression techniques such as autoencoder can be utilized to obtain and transmit the data in terms of latent variables in a compact form. However, to overcome the lower-bandwidth limitation and achieve faster transmission, an adaptive and flexible over-compression method is necessary that can exploit only partial elements of the latent variables. To handle these cases, we propose a method for imputation of latent variables whose elements are partially excluded for additional compression. To perform imputation with only some dimensions of variables, exploiting prior information of the category- or instance-level is essential. In general, a prior distribution used in variational autoencoders is achieved from all of the training datapoints regardless of their labels. This type of flattened prior makes it difficult to perform imputation from the category- or instance-level distributions. We overcome this limitation by exploiting a category-specific multi-modal prior distribution in the latent space. By finding a modal in a latent space according to the remaining elements of the latent variables, the missing elements can be sampled. Based on the experiments on the ModelNet and Pascal3D datasets, the proposed approach shows a consistently superior performance over autoencoder and variational autoencoder up to 50\% data loss.


翻译:有效的人类机器人团队组合对于机器人能够与人类操作者分享其视觉感知非常重要。 但是,在严酷的远程协作环境中,实时将大量感官数据传输给低带宽网络,例如3D形状重建的任务,给 2D 相机图像。为了减轻数据传输的负担,可以使用自动编码器等数据压缩技术,以压缩形式获取和传输潜在变量的数据。然而,为了克服低带宽限制并实现更快的传输,必须采用适应性和灵活的自动超压方法,这种方法只能利用潜在变量的部分元素。要处理这些案例,我们建议一种估算潜在变量的方法,其元素部分被排除用于额外的压缩。为了只使用某些变量进行估算,利用类别或实例级级的先前信息是不可或缺的。一般来说,在变式变式变量中使用的先前的分布方式是从所有培训数据点实现的先前的变异性变异性,而不管其结构的变异性能的变异性变异性在先前的变异性变异性等级上,在前变性变性变性变的变性模型上,在前变性变性变性变的变性变的变性数据等级上,在前变的变性变变的变的变的变性变性变性变性变的变的变性变的变性变性变性变性变的变基级数据等级中,在前变性变变的变的变的变的变的变性变性变性变性变性变的变的变的变的变的变基级基级基级基级中,在前变变变变变变变变变变变变变变基级基底基底基底基级中,在前变基级中,在前变变变的变的变变变变变的变的变变的变的变变的变的变变变变的变的变变变的变的变的变的变变变变变变变变的变变变变变变变变变变变变变变变变变变变变变的变变变变变变变变变变变的变变变变的变的变的变的变的变变基级,在前变的变的变变变变变变变变变变变变变变的变变变变变变变

0
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
专知会员服务
110+阅读 · 2020年3月12日
已删除
将门创投
11+阅读 · 2019年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关资讯
已删除
将门创投
11+阅读 · 2019年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员