In this work, we consider how preference models in interactive recommendation systems determine the availability of content and users' opportunities for discovery. We propose an evaluation procedure based on stochastic reachability to quantify the maximum probability of recommending a target piece of content to an user for a set of allowable strategic modifications. This framework allows us to compute an upper bound on the likelihood of recommendation with minimal assumptions about user behavior. Stochastic reachability can be used to detect biases in the availability of content and diagnose limitations in the opportunities for discovery granted to users. We show that this metric can be computed efficiently as a convex program for a variety of practical settings, and further argue that reachability is not inherently at odds with accuracy. We demonstrate evaluations of recommendation algorithms trained on large datasets of explicit and implicit ratings. Our results illustrate how preference models, selection rules, and user interventions impact reachability and how these effects can be distributed unevenly.
翻译:在这项工作中,我们考虑互动建议系统中的偏好模式如何决定内容的可用性和用户发现的机会。我们提议基于随机可达性的评价程序,以量化向用户推荐一个目标内容以进行一套可允许的战略修改的最大可能性。这个框架使我们能够根据对用户行为的最低假设,对建议的可能性进行上限计算。可以使用随机可达性来发现内容的可用性方面的偏差,并判断给予用户的发现机会的局限性。我们表明,这一指标可以作为各种实际环境的组合程序有效计算,并进一步论证,可达性本质上与准确性并不矛盾。我们展示了对明确和隐含评级大数据集培训的建议算法的评价。我们的结果说明了偏好模式、选择规则和用户干预影响可达性如何以及这些影响如何分布不均。