The language of information theory is favored in both causal reasoning and machine learning frameworks. But, is there a better language than this? In this study, we demonstrate the pitfalls of infotheoretic estimation using first order statistics on (short) sequences for causal learning. We recommend the use of data compression based approaches for causality testing since these make very little assumptions on data as opposed to infotheoretic measures, and are more robust to finite data length effects. We conclude with a discussion on the challenges posed in modeling the effects of conditioning process $X$ with another process $Y$ in causal machine learning. Specifically, conditioning can increase 'confusion' which can be difficult to model by classical information theory. A conscious causal agent creates new choices, decisions and meaning which poses huge challenges for AI.


翻译:信息理论的语言在因果推理和机器学习框架中都得到偏好。 但是,是否有比这更好的语言呢?在本研究中,我们展示了使用关于因果学习顺序的第一顺序统计进行信息理论估算的陷阱。我们建议使用基于数据压缩的方法进行因果测试,因为这些方法对数据没有多少假设,而不是信息理论措施,并且对有限的数据长度效果更强有力。我们最后讨论在模拟因果机学中使用另一个过程($X$)的影响方面带来的挑战。具体地说,由于典型的信息理论很难模拟,调整可以增加“混杂 ” 。 一种有意识的因果因素创造了新的选择、决定和意义,给AI带来巨大的挑战。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
94+阅读 · 2021年8月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
因果关联学习,Causal Relational Learning
专知会员服务
182+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
0+阅读 · 2021年12月20日
Arxiv
14+阅读 · 2020年12月17日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
相关论文
Top
微信扫码咨询专知VIP会员