In the recent years, there has been a shift in facial behavior analysis from the laboratory-controlled conditions to the challenging in-the-wild conditions due to the superior performance of deep learning based approaches for many real world applications.However, the performance of deep learning approaches relies on the amount of training data. One of the major problems with data acquisition is the requirement of annotations for large amount of training data. Labeling process of huge training data demands lot of human support with strong domain expertise for facial expressions or action units, which is difficult to obtain in real-time environments.Moreover, labeling process is highly vulnerable to ambiguity of expressions or action units, especially for intensities due to the bias induced by the domain experts. Therefore, there is an imperative need to address the problem of facial behavior analysis with weak annotations. In this paper, we provide a comprehensive review of weakly supervised learning (WSL) approaches for facial behavior analysis with both categorical as well as dimensional labels along with the challenges and potential research directions associated with it. First, we introduce various types of weak annotations in the context of facial behavior analysis and the corresponding challenges associated with it. We then systematically review the existing state-of-the-art approaches and provide a taxonomy of these approaches along with their insights and limitations. In addition, widely used data-sets in the reviewed literature and the performance of these approaches along with evaluation principles are summarized. Finally, we discuss the remaining challenges and opportunities along with the potential research directions in order to apply facial behavior analysis with weak labels in real life situations.


翻译:近年来,由于对许多现实世界应用的深层次学习方法的优异性能,面部行为分析从实验室控制的条件转向具有挑战性的条件。 然而,深层学习方法的绩效取决于培训数据的数量。 数据获取的一个主要问题是大量培训数据的说明要求。 大量培训数据的标签化过程需要大量的人类支持,在实时环境中很难获得对面部表现或行动单位具有很强的域域域专门知识。 此外,标签化过程极易受到表达或行动单位的模棱两可的模棱两可,特别是由于领域专家的偏向导致的实际行动单位的强度。因此,深层学习方法的绩效分析取决于培训数据的数量。 在本文件中,我们全面审查了监督不力的面部行为分析方法,包括直截了当的尺寸标签以及与之相关的挑战和潜在研究方向。 我们随后在面行为分析中,在分析中系统地审视了现有的、使用的数据顺序,在分析中,在分析中,我们又在分析中,在分析中,还审视了目前采用的各种薄弱的面部说明以及与之相关的挑战。

0
下载
关闭预览

相关内容

计算机视觉中运动行为分析就是在不需要人为干预的情况下,综合利用计算机视觉、模式识别、图像处理、人工智能等诸多方面的知识和技术对摄像机拍录的图像序列进行自动分析,实现动态场景中的人体定位、跟踪和识别,并在此基础上分析和判断人的行为,其最终目标是通过对行为特征数据的分析来获取行为的语义描述与理解。运动人体行为分析在智能视频监控、高级人机交互、视频会议、基于行为的视频检索以及医疗诊断等方面有着广泛的应用前景和潜在的商业价值,是近年来计算机视觉领域最活跃的研究方向之一。 它包含视频中运动人体的自动检测、行为特征提取以及行为理解和描述等,属于图像分析和理解的范畴。从技术角度讲,人体行为分析和识别的研究内容相当丰富,涉及到图像处理、计算机视觉、模式识别、人工智能、形态学等学科知识。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年3月17日
Arxiv
19+阅读 · 2020年7月21日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
7+阅读 · 2018年11月29日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Top
微信扫码咨询专知VIP会员