The Lie--Trotter product formula is a foundational approximation for the quantum partition function, yet obtaining rigorous error bounds for the unbounded Hamiltonians common in physics remains a significant challenge. This paper provides a quantitative error analysis for this approximation across two key systems. For a particle in a smooth, periodic potential, we establish an optimal convergence rate of $\mathcal O(1/N^2)$ for both the partition function and thermal averages, where $N$ is the number of imaginary time steps. We then extend this analysis to the more challenging case of a confining potential on $\mathbb R$, proving a nearly optimal rate of $\mathcal O((\log N+1)^{\frac32}/N^2)$. The derived error bounds provide a firm mathematical foundation for the high-order accuracy of path integral simulations in quantum statistical mechanics.
翻译:Lie--Trotter乘积公式是量子配分函数的基础近似方法,然而对于物理学中常见的无界哈密顿量,获得严格的误差界仍然是一个重大挑战。本文针对两个关键系统对此近似进行了定量误差分析。对于处于光滑周期势中的粒子,我们为配分函数和热平均值均建立了$\mathcal O(1/N^2)$的最优收敛率,其中$N$为虚时间步数。随后,我们将此分析推广至更具挑战性的$\mathbb R$上束缚势情形,证明了$\mathcal O((\log N+1)^{\frac32}/N^2)$的近乎最优收敛率。所推导的误差界为量子统计力学中路径积分模拟的高阶精度奠定了坚实的数学基础。