Automating ontology construction and curation is an important but challenging task in knowledge engineering and artificial intelligence. Prediction by machine learning techniques such as contextual semantic embedding is a promising direction, but the relevant research is still preliminary especially for expressive ontologies in Web Ontology Language (OWL). In this paper, we present a new subsumption prediction method named BERTSubs for classes of OWL ontology. It exploits the pre-trained language model BERT to compute contextual embeddings of a class, where customized templates are proposed to incorporate the class context (e.g., neighbouring classes) and the logical existential restriction. BERTSubs is able to predict multiple kinds of subsumers including named classes from the same ontology or another ontology, and existential restrictions from the same ontology. Extensive evaluation on five real-world ontologies for three different subsumption tasks has shown the effectiveness of the templates and that BERTSubs can dramatically outperform the baselines that use (literal-aware) knowledge graph embeddings, non-contextual word embeddings and the state-of-the-art OWL ontology embeddings.
翻译:摘要:在知识工程和人工智能中,自动化本体构建和维护是一项重要但具有挑战性的任务。使用基于机器学习技术,如上下文语义嵌入的预测方法是一个有前途的方向,但相关研究仍处于初步阶段,特别是对于使用Web本体语言(OWL)的表达性本体。本文提出了一种名为BERTSubs的新的子类归属预测方法,用于OWL本体的类。它利用预训练语言模型BERT计算类的上下文嵌入,提出自定义模板来融入类的上下文(例如相邻类)和逻辑存在性限制。BERTSubs能够预测同一本体或另一个本体的命名类以及来自同一本体的存在性限制等多种子类归属者。在三种不同的子类任务的五个真实本体上进行的大量评估表明了模板的有效性和BERTSubs可以显着超越使用(文字感知的)知识图谱嵌入,非上下文词嵌入和最先进的OWL本体嵌入的基准线。