We extend the AAA (Adaptive-Antoulas-Anderson) algorithm to develop a data-driven modeling framework for linear systems with quadratic output (LQO). Such systems are characterized by two transfer functions: one corresponding to the linear part of the output and another one to the quadratic part. We first establish the joint barycentric representations and the interpolation theory for the two transfer functions of LQO systems. This analysis leads to the proposed AAA-LQO algorithm. We show that by interpolating the transfer function values on a subset of samples together with imposing a least-squares minimization on the rest, we construct reliable data-driven LQO models. Two numerical test cases illustrate the efficiency of the proposed method.
翻译:我们扩展了AAA(Adaptition-Antoulas-Anderson)算法,为具有二次输出(LQO)的线性系统开发数据驱动模型框架,这种系统具有两个转移功能:一个功能相当于输出的线性部分,另一个功能相当于二次输出部分。我们首先为LQO系统的两个传输功能建立联合的以巴中心为主的表示法和内插理论。这一分析导致拟议的AAAA-LQO算法。我们表明,通过将一个样本子组的转移功能值与对其余部分的最小最小最小化结合起来,我们建立了可靠的以数据为主的LQO模型。两个数字测试案例表明了拟议方法的效率。