Assume that a set of $P$ process parameters $p_i$, $i=1,\dots,P$, determines the outcome of a set of $D$ descriptor variables $d_j$, $j=1,\dots,D$, via an unknown functional relationship $\phi: \mathbf{p} \mapsto \mathbf{d}, \, \mathbb{R}^{P} \to \mathbb{R}^{D}$, where $\mathbf{p}=(p_1,\dots,p_{P})$, $\mathbf{d}=(d_1,\dots,d_{D})$. It is desired to find appropriate values $\mathbf{\hat p} = ({\hat p}_1,\dots, {\hat p}_P)$ for the process parameters such that the corresponding values of the descriptor variables $\phi (\mathbf {\hat p})$ are close to a given target $\mathbf d^*=(d^*_1,\dots,d^*_D)$, assuming that at least one exact solution exists. A sequential approach using dimension reduction techniques has been developed to achieve this. In a simulation study, results of the suggested approach and the algorithms NSGA-II, SMS-EMOA and MOEA/D are compared.


翻译:假设一套$P$的流程参数 $p_ i$, $i= 1,\ dots, P$, 确定一套$D的描述变量结果 $_j$, $j= 1, dots, D$, 通过未知的功能关系$\phi:\ mathbf{p}\ p}\ mappsto\ mathbf{d},\\,\,\,\\\ mathb{R}\\\\\ to\ mathb{RS}, $1, $1,\\ dots,\\ dots, p},\\\\\\\d, 美元, 美元 美元, 美元 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 方法, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 方法, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 方法, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 方法, 一种, 一种, 折, 一种, 一种, 一种, 方法, 。</s>

0
下载
关闭预览

相关内容

【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
68+阅读 · 2022年9月30日
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月2日
Arxiv
0+阅读 · 2023年5月2日
Arxiv
0+阅读 · 2023年4月30日
Arxiv
0+阅读 · 2023年4月28日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员