We propose a novel prediction interval method to learn prediction mean values, lower and upper bounds of prediction intervals from three independently trained neural networks only using the standard mean squared error (MSE) loss, for uncertainty quantification in regression tasks. Our method requires no distributional assumption on data, does not introduce unusual hyperparameters to either the neural network models or the loss function. Moreover, our method can effectively identify out-of-distribution samples and reasonably quantify their uncertainty. Numerical experiments on benchmark regression problems show that our method outperforms the state-of-the-art methods with respect to predictive uncertainty quality, robustness, and identification of out-of-distribution samples.


翻译:我们提出了一个新的预测间隔方法,从三个独立训练的神经网络中学习预测平均值、预测间隔的下限和上限,仅使用标准平均正方差损失,用于回归任务中的不确定性量化。我们的方法不要求对数据进行分配假设,不向神经网络模型或损失函数引入异常的超参数。此外,我们的方法可以有效地识别分布范围之外的样本,并合理地量化其不确定性。基准回归问题的数值实验表明,我们的方法在预测不确定性质量、稳健性和确定分配以外的样本方面超过了最先进的方法。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
55+阅读 · 2021年5月17日
小米在预训练模型的探索与优化
专知会员服务
18+阅读 · 2020年12月31日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年9月12日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
0+阅读 · 2021年10月4日
Arxiv
0+阅读 · 2021年10月1日
Inductive Relation Prediction by Subgraph Reasoning
Arxiv
11+阅读 · 2020年2月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年9月12日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员