In this paper we deal with pointwise approximation of solutions of stochastic differential equations (SDEs) driven by infinite dimensional Wiener process with additional jumps generated by Poisson random measure. The further investigations contain upper error bounds for the proposed truncated dimension randomized Euler scheme. We also establish matching (up to constants) upper and lower bounds for $\varepsilon$-complexity and show that the defined algorithm is optimal in the Information-Based Complexity (IBC) sense. Finally, results of numerical experiments performed by using GPU architecture are also reported.


翻译:在本文中,我们处理的是由无限维纳进程驱动的随机跳跃式差异方程式(SDEs)解决方案的近似点。 进一步的调查包含拟议短线尺寸随机变电法计划的上误差界限。 我们还为$\varepsilon$- complexity 建立匹配( 最高为常数), 并显示定义的算法在基于信息的复杂度( IBC) 的意义上是最佳的。 最后, 也报告了使用 GPU 结构进行的数字实验的结果 。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月4日
Arxiv
0+阅读 · 2021年10月2日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员