The design of a control architecture for providing the desired motion along with the realization of the joint limitation of a robotic system is still an open challenge in control and robotics. This paper presents a torque control architecture for fully actuated manipulators for tracking the desired time-varying trajectory while ensuring the joints position and velocity limits. The presented architecture stems from the parametrization of the feasible joints position and velocity space by exogenous states. The proposed parametrization transforms the control problem with constrained states to an un-constrained one by replacing the joints position and velocity with the exogenous states. With the help of Lyapunov-based arguments, we prove that the proposed control architecture ensures the stability and convergence of the desired joint trajectory along with the joints position and velocity limits avoidance. We validate the performance of proposed architecture through various simulations on a simple two-degree-of-freedom manipulator and the humanoid robot iCub.
翻译:设计一种控制架构,使机器人系统可以在实现关节限制的同时提供所需的运动,是控制与机器人领域仍然存在的挑战。本文提出了一种用于全驱动机械臂的扭矩控制架构,用于跟踪所需的时变轨迹,同时确保关节位置和速度限制。所提出的架构源于可行关节位置和速度空间的外生状态参数化。所提出的参数化方法通过将关节位置和速度替换为外生状态,将带有约束状态的控制问题转化为不带约束的控制问题。在Lyapunov理论的基础上,我们证明了所提出的控制架构确保了所需关节轨迹的稳定性和收敛性,同时避免了关节位置和速度限制。我们通过在简单的双自由度 manipulator 和 humanoid robot iCub 上进行各种模拟,验证了所提出架构的性能。