The $k$-Center problem is one of the most popular clustering problems. After decades of work, the complexity of most of its variants on general metrics is now well understood. Surprisingly, this is not the case for a natural setting that often arises in practice, namely the Euclidean setting, in which the input points are points in $\mathbb{R}^d$, and the distance between them is the standard $\ell_2$ Euclidean distance. In this work, we study two Euclidean $k$-Center variants, the Matroid Center problem on the real line and the Robust Euclidean $k$-Supplier problem, and provide algorithms that improve upon the best approximation guarantees known for these problems. In particular, we present a simple $2.5$-approximation algorithm for the Matroid Center problem on the real line, thus improving upon the $3$-approximation factor algorithm of Chen, Li, Liang, and Wang (2016) that works for general metrics. Moreover, we present a $(1 + \sqrt{3})$-approximation algorithm for the Robust Euclidean $k$-Supplier problem, thus improving upon the state-of-the-art $3$-approximation algorithm for Robust $k$-Supplier on general metrics and matching the best approximation factor known for the non-robust setting by Nagarajan, Schieber and Shachnai (2020).
翻译:$k$- center 问题是最受欢迎的组群问题之一。 经过数十年的工作, 其大部分通用指标变异的复杂程度现在已经完全被人们所理解。 令人惊讶的是, 在实践中经常出现的自然环境, 即 Euclidean 设置, 输入点是 $mathbb{R ⁇ d$ 的点, 而两者之间的距离是 标准 $ ell_ 2美元 欧几里德距离 。 在这项工作中, 我们研究了两个欧几里德 $- center 变量、 实线的 Materroid Center 问题 和 Robust Euclidean $k- suppier 问题, 并提供算法可以改善这些问题所知道的最佳近似保证。 特别是, 我们为实线上的Matroid Centro Centrical $ (美元)、 Liang (利昂) 和Wang (美元) 等通用算法的 。 此外, 我们为平面的 RB- clob- cal- cal- cal- cal- cal- setty- setty- setty- settal 3xnational) 提供 3xy- sal- sal- supal- sal- supal- salational.