It is a common practice in multimodal medical imaging to undersample the anatomically-derived segmentation images to measure the mean activity of a co-acquired functional image. This practice avoids the resampling-related Gibbs effect that would occur in oversampling the functional image. As sides effect, waste of time and efforts are produced since the anatomical segmentation at full resolution is performed in many hours of computations or manual work. In this work we explain the commonly-used resampling methods and give errors bound in the cases of continuous and discontinuous signals. Then we propose a Fake Nodes scheme for image resampling designed to reduce the Gibbs effect when oversampling the functional image. This new approach is compared to the traditional counterpart in two significant experiments, both showing that Fake Nodes resampling gives smaller errors.


翻译:在多式医学成像中,一种常见的做法就是对来自解剖的分解图象进行少样抽样,以测量共同获得的功能图像的平均值活动。这种做法避免了在过度取样功能图像时会产生的与再抽样相关的Gibs效应。作为副作用,由于全解剖分解在数小时的计算或人工工作中进行,造成了时间和努力的浪费。在这项工作中,我们解释了常用的重新采样方法,并在连续和不连续信号的情况下给出了一定的错误。然后,我们提出了一个假节点方案,目的是在过分采样功能图像时减少Gibs效应。这一新办法与两个重大实验中的传统对应方法相比,两者都表明Fake Nodes再采样的错误较小。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员