A Boolean function $f({\vec x})$ is sensitive to bit $x_i$ if there is at least one input vector $\vec x$ and one bit $x_i$ in $\vec x$, such that changing $x_i$ changes $f$. A function has sensitivity $s$ if among all input vectors, the largest number of bits to which $f$ is sensitive is $s$. We count the $n$-variable symmetric Boolean functions that have maximum sensitivity. We show that most such functions have the largest possible sensitivity, $n$. This suggests sensitivity is limited as a complexity measure for symmetric Boolean functions.
翻译:暂无翻译