Stencil composition uses the idea of function composition, wherein two stencils with arbitrary orders of derivative are composed to obtain a stencil with a derivative order equal to sum of the orders of the composing stencils. In this paper, we show how stencil composition can be applied to form finite difference stencils in order to numerically solve partial differential equations (PDEs). We present various properties of stencil composition and investigate the relationship between the order of accuracy of the composed stencil and that of the composing stencils. We also present comparisons between the stability restrictions of composed higher-order PDEs to their compact versions and numerical experiments wherein we verify the order of accuracy by convergence tests. To demonstrate an application to PDEs, a boundary value problem involving the two-dimensional biharmonic equation is numerically solved using stencil composition and the order of accuracy is verified by performing a convergence test. The method is then applied to the Cahn-Hilliard phase-field model. In addition to sample results in 2D and 3D for this benchmark problem, the scalability, spectral properties, and sparsity is explored.
翻译:暂无翻译