We give a simplified and improved lower bound for the simplex range reporting problem. We show that given a set $P$ of $n$ points in $\mathbb{R}^d$, any data structure that uses $S(n)$ space to answer such queries must have $Q(n)=\Omega((n^2/S(n))^{(d-1)/d}+k)$ query time, where $k$ is the output size. For near-linear space data structures, i.e., $S(n)=O(n\log^{O(1)}n)$, this improves the previous lower bounds by Chazelle and Rosenberg [CR96] and Afshani [A12] but perhaps more importantly, it is the first ever tight lower bound for any variant of simplex range searching for $d\ge 3$ dimensions. We obtain our lower bound by making a simple connection to well-studied problems in incident geometry which allows us to use known constructions in the area. We observe that a small modification of a simple already existing construction can lead to our lower bound. We believe that our proof is accessible to a much wider audience, at least compared to the previous intricate probabilistic proofs based on measure arguments by Chazelle and Rosenberg [CR96] and Afshani [A12]. The lack of tight or almost-tight (up to polylogarithmic factor) lower bounds for near-linear space data structures is a major bottleneck in making progress on problems such as proving lower bounds for multilevel data structures. It is our hope that this new line of attack based on incidence geometry can lead to further progress in this area.
翻译:对于简单范围报告问题,我们给出了一个简化和改良的更低约束值。我们显示,如果以美元计的设定值为美元,那么使用美元(n)空间回答这类询问的任何数据结构都必须有美元(n){(n)}{(d-1)/d ⁇ k)的查询时间。对于近线空间数据结构,即 $S(n)=O(n)=O(n)}$(n),这改善了查泽尔和罗森伯格(CR96)和阿夫沙尼(A12)以前的较低界限,但更重要的是,它必须是以美元(n)=O(n)=美元(n)=O(n)$(n)=O(log ⁇ O(1)})$(n)$)。对于近线(n) 美元(n) 美元(n) 美元(n) 美元(n) 美元(n) =(n) 美元(n) 美元(n) =(n) 美元(n) 美元(n) 美元(n) =(n) 美元(n) 美元(n) 美元(n) 美元(n) 美元(n) 美元(n) 美元(n) 美元(n) =(n) =(n) 美元) 美元) 美元) 美元(n) 美元(n) 美元) 美元(n) 美元) 美元(n(n) 美元(n(n) 美元(n(n(n) 美元) 美元(n) =(n) =(n) ) =(n) =(n(n) 美元(n) 美元(n) 美元) 美元(n) ) ) ) ) ) =(n(n) ) ) ) 美元(n(n(n(n) 美元(n) ) ) ) ) ) 美元(n(n(n(n(n(n) ) ) ) ) ) ) =(n) ) ) ) ) ) ) 美元(n(n(n(n(n(n(n) =(n) (