Centrality measures are commonly used to analyze graph-structured data; however, the principles of this diverse world of measures are not well understood. Even in the case of tree structures, there is no consensus on which node should be selected as the most central. In this work, we embark on studying centrality measures over trees, specifically, on understanding what is the structure of various centrality rankings in trees. We introduce a property of \emph{rooting trees} that states a measure selects one or two adjacent nodes as the most important and the importance decreases from them in all directions. This property is satisfied by closeness centrality, but violated by PageRank. We show that for all standard centralities that root trees the comparison of adjacent nodes can be inferred by \emph{potential functions} that assess the quality of trees. We use these functions to give fundamental insights on rooting and derive a characterization that explains why some measures root trees. Moreover, we provide a polynomial-time algorithm to compute the root of a graph by using potential functions. Finally, using a family of potential functions, we show that there exist infinitely many ways of rooting trees with desirable properties.
翻译:中心度措施通常用于分析图表结构数据; 但是, 这个不同的计量世界的原则并没有被很好地理解。 即使对于树结构, 也没有关于哪些节点应该被选为最核心的共识。 在这项工作中, 我们开始研究树木的中心度措施, 具体地说, 了解树上各种中心分级的结构。 我们引入了一种测量属性, 显示一个测量值选择一到两个相邻节点为最重要的节点, 在所有方向上它们的重要性下降。 这个属性满足于近距离中心点, 但被PechRank 所违反。 我们显示, 对于所有标准中心点, 根树的对比可以通过评估树木质量的emph{ 潜在函数来推断。 我们使用这些函数来给出根性的基本洞察力, 并得出一个特征来解释为什么某些测量值根树。 此外, 我们提供了一种多元时间算法, 通过使用潜在函数来对图根进行计算。 最后, 我们用一个潜在函数组合来显示, 有无限的根树特性。