We develop clustering procedures for longitudinal trajectories based on a continuous-time hidden Markov model (CTHMM) and a generalized linear observation model. Specifically in this paper, we carry out finite and infinite mixture model-based clustering for a CTHMM and achieve inference using Markov chain Monte Carlo (MCMC). For a finite mixture model with prior on the number of components, we implement reversible-jump MCMC to facilitate the trans-dimensional move between different number of clusters. For a Dirichlet process mixture model, we utilize restricted Gibbs sampling split-merge proposals to expedite the MCMC algorithm. We employ proposed algorithms to the simulated data as well as a real data example, and the results demonstrate the desired performance of the new sampler.
翻译:我们根据连续时间隐藏的Markov模型(CTHMM)和一般线性观测模型(CTHM)制定纵向轨迹的集群程序。具体来说,在本文中,我们为CTHMM执行有限和无限的混合模型集群,并利用Markov链蒙特卡洛(MCMC)得出推论。对于一个以前在部件数量上具有一定混合模型的有限混合物模型,我们实施可逆跳式MCMC,以便利不同数量组群之间的跨维移动。对于一个Drichlet进程混合模型,我们使用限量的Gibs抽样拆解-合并建议来加快MCMC的算法。我们采用了模拟数据的算法以及一个真实的数据示例,结果显示了新取样员的预期性能。