3D Gaussian Splatting (3DGS) based Simultaneous Localization and Mapping (SLAM) systems can largely benefit from 3DGS's state-of-the-art rendering efficiency and accuracy, but have not yet been adopted in resource-constrained edge devices due to insufficient speed. Addressing this, we identify notable redundancies across the SLAM pipeline for acceleration. While conceptually straightforward, practical approaches are required to minimize the overhead associated with identifying and eliminating these redundancies. In response, we propose RTGS, an algorithm-hardware co-design framework that comprehensively reduces the redundancies for real-time 3DGS-SLAM on edge. To minimize the overhead, RTGS fully leverages the characteristics of the 3DGS-SLAM pipeline. On the algorithm side, we introduce (1) an adaptive Gaussian pruning step to remove the redundant Gaussians by reusing gradients computed during backpropagation; and (2) a dynamic downsampling technique that directly reuses the keyframe identification and alpha computing steps to eliminate redundant pixels. On the hardware side, we propose (1) a subtile-level streaming strategy and a pixel-level pairwise scheduling strategy that mitigates workload imbalance via a Workload Scheduling Unit (WSU) guided by previous iteration information; (2) a Rendering and Backpropagation (R&B) Buffer that accelerates the rendering backpropagation by reusing intermediate data computed during rendering; and (3) a Gradient Merging Unit (GMU) to reduce intensive memory accesses caused by atomic operations while enabling pipelined aggregation. Integrated into an edge GPU, RTGS achieves real-time performance (>= 30 FPS) on four datasets and three algorithms, with up to 82.5x energy efficiency over the baseline and negligible quality loss. Code is available at https://github.com/UMN-ZhaoLab/RTGS.


翻译:暂无翻译

0
下载
关闭预览

相关内容

即时定位与地图构建(SLAM或Simultaneouslocalizationandmapping)是这样一种技术:使得机器人和自动驾驶汽车等设备能在未知环境(没有先验知识的前提下)建立地图,或者在已知环境(已给出该地图的先验知识)中能更新地图,并保证这些设备能在同时追踪它们的当前位置。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员