Existing studies on neural architecture search (NAS) mainly focus on efficiently and effectively searching for network architectures with better performance. Little progress has been made to systematically understand if the NAS-searched architectures are robust to privacy attacks while abundant work has already shown that human-designed architectures are prone to privacy attacks. In this paper, we fill this gap and systematically measure the privacy risks of NAS architectures. Leveraging the insights from our measurement study, we further explore the cell patterns of cell-based NAS architectures and evaluate how the cell patterns affect the privacy risks of NAS-searched architectures. Through extensive experiments, we shed light on how to design robust NAS architectures against privacy attacks, and also offer a general methodology to understand the hidden correlation between the NAS-searched architectures and other privacy risks.
翻译:关于神经结构搜索的现有研究(NAS)主要侧重于以高效和高效的方式搜索业绩更好的网络结构。在系统了解NAS研究的建筑是否对隐私攻击具有很强的威力方面进展甚微,而大量工作已经表明,人类设计的建筑很容易受到隐私攻击。在本文中,我们填补这一空白并系统地测量NAS结构的隐私风险。我们利用测量研究的洞察力,进一步探索基于细胞的NAS结构的细胞模式,并评估细胞模式如何影响NAS研究的建筑的隐私风险。通过广泛的实验,我们就如何设计强有力的NAS结构防止隐私攻击提供了指导,还提供了一个了解NAS研究的建筑与其他隐私风险之间隐藏的关联的一般方法。