This work proposes a new class of proactive attacks called the Informational Denial-of-Service (IDoS) attacks that exploit the attentional human vulnerability. By generating a large volume of feints, IDoS attacks deplete the cognition resources of human operators to prevent humans from identifying the real attacks hidden among feints. This work aims to formally define IDoS attacks, quantify their consequences, and develop human-assistive security technologies to mitigate the severity level and risks of IDoS attacks. To this end, we model the feint and real attacks' sequential arrivals with category labels as a semi-Markov process. The assistive technology strategically manages human attention by highlighting selective alerts periodically to prevent the distraction of other alerts. A data-driven approach is applied to evaluate human performance under different Attention Management (AM) strategies. Under a representative special case, we establish the computational equivalency between two dynamic programming representations to simplify the theoretical computation and the online learning. A case study corroborates the effectiveness of the learning framework. The numerical results illustrate how AM strategies can alleviate the severity level and the risk of IDoS attacks. Furthermore, we characterize the fundamental limits of the minimum severity level under all AM strategies and the maximum length of the inspection period to reduce the IDoS risks.
翻译:这项工作提出了一种新的先发制人的攻击类别,称为信息拒绝服务(IDoS)攻击,利用人们的注意力脆弱性。通过产生大量的性欲,IDoS攻击耗尽了人类操作者的认知资源,以防止人类辨认出在胎儿之间隐藏的真正攻击。这项工作旨在正式界定IDoS攻击,量化其后果,并开发人力辅助安全技术,以减轻IDoS攻击的严重程度和风险。为此,我们以半Markov过程的标签为样板,模拟出血和实际攻击的连续抵达类别。辅助技术从战略上管理人类注意力,定期突出有选择的警报,防止其他警报的分散。根据不同的注意管理(AM)战略,采用数据驱动的方法评估人类的性能。在具有代表性的一例下,我们确定两个动态的方案拟订代表之间的计算等值,以简化理论计算和在线学习。一项案例研究证实了学习框架的有效性。数字结果表明,AM战略如何减轻IDoS攻击的严重程度和风险。此外,我们在最大程度的AM战略下,我们把基本限度缩小到IDoS攻击程度。