The empirical validation of models remains one of the most important challenges in opinion dynamics. In this contribution, we report on recent developments on combining data from survey experiments with computational models of opinion formation. We extend previous work on the empirical validation of an argument-based model for opinion dynamics in which biased processing is the principle mechanism. While previous work has focused on calibrating the micro mechanism with experimental data on argument-induced opinion change, this paper concentrates on macro-level validity using the empirical data gathered in the survey experiment. For this purpose, the argument model is extended by an external source of balanced information which allows to control for the impact of peer influence processes relative to other noisy processes. We show that surveyed opinion distributions are matched with a high level of accuracy in a specific region in the parameter space, indicating an equal impact of social influence and external noise. More importantly, the estimated strength of biased processing given the macro data is compatible with those values that achieve high likelihood at the micro level. The main contribution of the paper is hence to show that the extended argument-based model provides a solid bridge from the micro processes of argument-induced attitude change to macro level opinion distributions. Beyond that, we review the development of argument-based models and present a new method for the automated classification of model outcomes.
翻译:对模型的实证验证仍然是意见动态中最重要的挑战之一。在这一贡献中,我们报告了将调查实验中的数据与意见形成计算模型相结合的最新动态。我们延长了以前关于对基于论据的意见动态模型进行实证的实证工作,在这种模型中,偏向处理是原则机制。虽然以前的工作重点是将微观机制与关于论据引起的意见变化的实验数据相校准,但本文件利用在调查实验中收集的经验数据,侧重于宏观一级的有效性。为此,通过外部平衡信息来源扩展了论证模型,从而能够控制同行影响过程相对于其他噪音过程的影响。我们表明,在参数空间的特定区域,所调查的意见分布与高度的准确性相匹配,表明社会影响和外部噪音的同等影响。更重要的是,宏观数据中偏向处理的估计强度与在微观一级极有可能实现的数值相匹配。因此,本文的主要贡献是表明,基于论据的扩展模型提供了坚实的桥梁,从论证引发的态度变化的微观过程到宏观一级意见模型的分布。此外,我们审查了基于数据自动化分类方法的发展。