Suppose X is a multivariate diffusion process that is observed discretely in time. At each observation time, a transformation of the state of the process is observed with noise. The smoothing problem consists of recovering the path of the process, consistent with the observations. We derive a novel Markov Chain Monte Carlo algorithm to sample from the exact smoothing distribution. The resulting algorithm is called the Backward Filtering Forward Guiding (BFFG) algorithm. We extend the algorithm to include parameter estimation. The proposed method relies on guided proposals introduced in Schauer et al. (2017). We illustrate its efficiency in a number of challenging problems.


翻译:假设X是一个多变量的传播过程, 在时间上可以独立观测。 每次观察时, 都会用噪音观察过程状态的变化。 平滑的问题包括恢复过程的路径, 与观察一致。 我们从精确的平滑分布中提取了一部新颖的Markov 链条蒙特卡洛算法样本。 由此产生的算法被称为向后过滤前导算法( BFFG) 。 我们扩展了算法, 以包括参数估计。 拟议的方法依赖于Schauer等人( 2017年) 中引入的有指导的建议。 我们展示了它在若干具有挑战性的问题中的效率 。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ICML2019:Google和Facebook在推进哪些方向?
专知
5+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能领域顶会IJCAI 2018 接受论文列表
专知
5+阅读 · 2018年5月16日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
6+阅读 · 2019年12月30日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
3+阅读 · 2017年3月8日
VIP会员
相关VIP内容
相关资讯
ICML2019:Google和Facebook在推进哪些方向?
专知
5+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能领域顶会IJCAI 2018 接受论文列表
专知
5+阅读 · 2018年5月16日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员