Data integration has been recently challenged by the need to handle large volumes of data, arriving at high velocity from a variety of sources, which demonstrate varying levels of veracity. This challenging setting, often referred to as big data, renders many of the existing techniques, especially those that are human-intensive, obsolete. Big data also produces technological advancements such as Internet of things, cloud computing, and deep learning, and accordingly, provides a new, exciting, and challenging research agenda. Given the availability of data and the improvement of machine learning techniques, this blog discusses the respective roles of humans and machines in achieving cognitive tasks in matching, aiming to determine whether traditional roles of humans and machines are subject to change. Such investigation, we believe, will pave a way to better utilize both human and machine resources in new and innovative manners. We shall discuss two possible modes of change, namely humans out and humans in. Humans out aim at exploring out-of-the-box latent matching reasoning using machine learning algorithms when attempting to overpower human matcher performance. Pursuing out-of-the-box thinking, machine and deep learning can be involved in matching. Humans in explores how to better involve humans in the matching loop by assigning human matchers with a symmetric role to algorithmic matcher in the matching process.
翻译:最近,由于需要处理大量数据,数据整合最近受到挑战,需要处理大量数据,从各种来源以高速得出,显示不同程度的真实性。这种具有挑战性的环境,通常被称为大数据,使得许多现有技术,特别是人力密集、过时的技术。大数据还产生技术进展,例如物的互联网、云计算和深层次学习,因此提供了一个新的、令人兴奋的和具有挑战性的研究议程。鉴于数据的可用性以及机器学习技术的改进,本博客讨论人类和机器在实现认知任务匹配方面各自的作用,目的是确定人类和机器的传统作用是否会发生变化。我们认为,这种调查将为以新的和创新的方式更好地利用人类和机器资源铺平道路。我们将讨论两种可能的变革模式,即人类的外出和人类的深层学习,从而提供一个新的、令人兴奋的和具有挑战性的研究议程。人类在试图超能力匹配人的性能时,利用机器学习算法来探索出各种潜在的比力的推理。在匹配人与人之间匹配的思维、机器和深层学习中可以参与匹配。在匹配中,人类的比对比力中,人类的比力将如何使人与人与人更接近。